Home
Class 11
MATHS
If z^2+z|z|+|z^2|=0, then the locus z is...

If `z^2+z|z|+|z^2|=0,` then the locus `z` is a. a circle b. a straight line c. a pair of straight line d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-1|=2 then the locus of z is

If |z-1|=|z-3| then the locus of z is

If |z+3|^(2)-|z-3|^(2)=8 then the locus of z is

If |z-z_(1)|=|z-z_(2)| then the locus of z is :

If |(z-i)/(z+i)|=1 , then the locus of z is

If |z+barz|+|z-barz|=2 then z lies on (a) a straight line (b) a set of four lines (c) a circle (d) None of these

If |z|=1, then the point representing the complex number -1+3z will lie on a. a circle b. a parabola c. a straight line d. a hyperbola

If t and c are two complex numbers such that |t|!=|c|,|t|=1a n dz=(a t+b)/(t-c), z=x+i ydot Locus of z is (where a, b are complex numbers) a. line segment b. straight line c. circle d. none of these

If z=3/(2+costheta+"isin"theta) then locus of z is a. straight line b. a circle having center on the y-axis c. a parabola d. a circle having center on the x-axis

The complex numbers z=x+iy which satisfy the equation |(z-5i)/(z+5i)|=1 lie on (a) The x-axis (b) The straight line y=5 (c) A circle passing through the origin (d) Non of these