Home
Class 11
MATHS
z1a n dz2 lie on a circle with center at...

`z_1a n dz_2` lie on a circle with center at the origin. The point of intersection `z_3` of the tangents at `z_1a n dz_2` is given by a. `1/2(z_1+( z )_2)` b. `(2z_1z_2)/(z_1+z_2)` c. `1/2(1/(z_1)+1/(z_2))` d. `(z_1+z_2)/(( z )_1( z )_2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_1a n dz_2 are conjugate to each other then find a r g(-z_1z_2)dot

If z_(1) =2 -i, z_(2)=1+i , find |(z_(1) + z_(2) + 1)/(z_(1)-z_(2) + 1)|

For any two complex numbers z_(1)" and "z_(2) prove that Im(z_(1)z_(2))=Re(z_1) Im(z_2)+ Im(z_1)Re(z_2) .

Let z_(1)=2-i, z_(2)= -2+i . Find (i) Re((z_(1)z_(2))/(z_1)) (ii) Im((1)/(z_(1)z_(2))) .

Let vertices of an acute-angled triangle are A(z_1),B(z_2),a n dC(z_3)dot If the origin O is he orthocentre of the triangle, then prove that z_1( bar z )_2+( bar z )_1z_2=z_2( bar z )_3+( bar z )_2z_3=z_3( bar z )_1+( bar z )_(3)z_1

If |z_1/z_2|=1 and arg (z_1z_2)=0 , then

For any two complex numbers z_(1)" and "z_(2) prove that (i) Re(z_(1)z_(2))=Re(z_1) Re(z_2)-Im(z_1)Im(z_2) .

If (2z_1)/(3z_2) is purely imaginary then |(z_(1)-z_(2))/(z_(1)+z_(2))|

If z_1 and z_2 are two complex number such that |z_1|<1<|z_2| then prove that |(1-z_1 bar z_2)/(z_1-z_2)|<1

If z_(1)=2-i, z_(2)=1+i , find |(z_(1)+z_(2)+1)/(z_(1)-z_(2)+1)| .