Home
Class 11
MATHS
The number of complex numbers z satisfyi...

The number of complex numbers `z` satisfying `|z-3-i|=|z-9-i|a n d|z-3+3i|=3` are a. one b. two c. four d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the non-zero complex numbers z satisfying z =i z^2dot

Let z be a complex number satisfying |z+16|=4|z+1| . Then

Find the complex number z satisfying R e(z^2) =0,|z|=sqrt(3.)

Find the number of complex numbers which satisfies both the equations |z-1-i|=sqrt(2)a n d|z+1+i|=2.

The complex number z satisfies z+|z|=2+8i . find the value of |z|-8

If z is any complex number satisfying |z-3-2i|lt=2 then the maximum value of |2z-6+5i| is

The modulus of the complex number z such that |z+3-i|=1" and "arg z= pi is equal to

Modulus of nonzero complex number z satisfying barz +z=0 and |z|^2-4z i=z^2 is _________.

For all complex numbers z_1,z_2 satisfying |z_1|=12 and |z_2-3-4i|=5 , find the minimum value of |z_1-z_2|

The greatest positive argument of complex number satisfying |z-4|=R e(z) is A. pi/3 B. (2pi)/3 C. pi/2 D. pi/4