Home
Class 11
MATHS
If a complex number z satisfies |2z+10+1...

If a complex number `z` satisfies `|2z+10+10 i|lt=3sqrt(3)-5,` then the least principal argument of `z` is a.`-(5pi)/6` b. `-(11pi)/(12)` c. `-(3pi)/4` d. `-(2pi)/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z is any complex number satisfying |z-3-2i|lt=2 then the maximum value of |2z-6+5i| is

If sqrt(5-12 i)+sqrt(-5-12 i)=z , then principal value of a rgz can be pi/4 b. pi/4 c. (3pi)/4 d. -(3pi)/4

Find the principal argument of the complex number sin(6pi)/5+i(1+cos(6pi)/5)dot

For all complex numbers z_1,z_2 satisfying |z_1|=12 and |z_2-3-4i|=5 , find the minimum value of |z_1-z_2|

Find the modulus, argument, and the principal argument of the complex numbers. (i-1)/(i(1-cos((2pi)/5))+sin((2pi)/5)

The principal value of sin^(-1)(sin((2pi)/3)) is (a) -(2pi)/3 (b) (2pi)/3 (c) (pi)/3 (d) (5pi)/3 (e) none of these

Find modulus and argument of the complex numbers z=-sqrt(3)+i

IF the lengths of the side of triangle are 3,5A N D7, then the largest angle of the triangle is pi/2 (b) (5pi)/6 (c) (2pi)/3 (d) (3pi)/4

The greatest positive argument of complex number satisfying |z-4|=R e(z) is A. pi/3 B. (2pi)/3 C. pi/2 D. pi/4

If sintheta=1/2a n dcostheta=-(sqrt(3))/2, then the general value of theta is (n in Z)dot (a) 2npi+(5pi)/6 (b) 2npi+pi/6 2npi+(7pi)/6 (d) 2npi+pi/4