Home
Class 11
MATHS
What is the locus of z if ||z-cos^(-1)co...

What is the locus of `z` if `||z-cos^(-1)cos12|-|z-sin^(-1)sin 12||=8(pi-3)?`

Promotional Banner

Similar Questions

Explore conceptually related problems

What is locus of z if |z-1-sin^(-1)(1/sqrt3)|+|z+cos^(-1)(1/sqrt3)-pi/2|=1?

The value of cos^(-1)(cos(5pi)/3)+sin^(-1)(sin(5pi)/3)"is"

If |z-1|=2 then the locus of z is

If z= x+iy find the locus of z if |2z+1| = 2 .

Find the value of cos^(-1)(cos""(pi)/(7)cos""(pi)/(17)-sin""(pi)/(7)sin""(pi)/(17))

In the Argands plane what is the locus of z(!=1) such that a rg{3/2((2z^2-5z+3)/(2z^2-z-2))}=(2pi)/3dot

Identify locus z if R e(z+1)=|z-1|

Find the locus of z if |3z - 5 | = 3 |z + 1| where z = x + iy

The value of sin^(-1) (sin 12) + cos^(-1) (cos 12) is equal to