Home
Class 11
MATHS
If |z^(2)-1|=|z^(2)|+1, then z lies on...

If `|z^(2)-1|=|z^(2)|+1`, then z lies on

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-z_(1)|=|z-z_(2)| then the locus of z is :

It z_(1) and z_(2) are two complex numbers, such that |z_(1)| = |z_(2)| , then is it necessary that z_(1) = z_(2) ?

If |z_1|=|z_2|=|z_3|=1 then value of |z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2 cannot exceed

If |z_(1)+ z_(2)|=|z_(1)|+|z_(2)| , then arg z_(1) - arg z_(2) is

If |z_(1)+z_(2)|=|z_1|+|z_2| then

If z^(2)+z+1=0 , where z is a complex number, then the value of (z+(1)/(z))^(2)+(z^(2)+(1)/(z^2))^(2)+(z^(3)+(1)/(z^3))^(2)+"……"+(z^(6)+(1)/(z^6))^(2) is

If | z_(1) | = 1, |z_(2)| = 2, |z_(3)| = 3 and |9z_(1)z_(2) + 4z_(1) z_(3) + z_(2) z_(3) = 12|, then the value of |z_(1) + z_(2) + z_(3)| is

If |2z-1|=|z-2|a n dz_1, z_2, z_3 are complex numbers such that |z_1-alpha|lt alpha , |z_2-beta|ltbeta, then= |(z_1+z_2)/ (alpha+beta)| a) lt|z| b.