Home
Class 11
MATHS
Identify the locus of z if bar z = bar...

Identify the locus of `z` if ` bar z = bar a +(r^2)/(z-a).`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the locus of z if Re ((bar(z) + 1)/(bar(z) - i)) = 0.

Identify locus z if R e(z+1)=|z-1|

If |z-1|=2 then the locus of z is

If z= x+iy find the locus of z if |2z+1| = 2 .

Let z=x+i ydot Then find the locus of P(z) such that (1+ bar z )/z in Rdot

Obtain the Cartesian form of the locus of z = x + iy in each of cases: bar(z) = z^(-1)

Find the locus of point z if z ,i ,a n di z , are collinear.

If |z-1|=|z-3| then the locus of z is

If |z-3+i|=4 , then the locus of z is

Obtain the Cartesian equation for the locus of z = x + iy in each of the cases: | z - 4|^(2) - |z-1|^(2) = 16