Home
Class 11
MATHS
What is locus of z if |z-1-sin^(-1)(1/...

What is locus of `z` if `|z-1-sin^(-1)(1/sqrt3)|+|z+cos^(-1)(1/sqrt3)-pi/2|=1?`

Promotional Banner

Similar Questions

Explore conceptually related problems

What is the locus of z if ||z-cos^(-1)cos12|-|z-sin^(-1)sin 12||=8(pi-3)?

Evaluate the value of tan^(-1) (-sqrt(3)) +cos^(-1) (1/(sqrt(2))) + sin^(-1) (-(sqrt(3))/2)

Identify locus z if R e(z+1)=|z-1|

The locus of z such that |(1+iz)/(z+i)|=1 is

If z= x+iy find the locus of z if |2z+1| = 2 .

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of x + y + z is equal to

If z=i log(2-sqrt3), then cosz = a.-1 b. (-1)/2 c. 1 d. 2

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of cos^(-1) ("min" {x, y, z}) is

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The principal value of cos^(-1) (cos 5t^(2)) is