Home
Class 11
MATHS
If |z-2-i|=|z|sin(pi/4-a r g z)| , wher...

If `|z-2-i|=|z|sin(pi/4-a r g z)|` , where `i=sqrt(-1)` ,then locus of z, is

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-1|=2 then the locus of z is

If |z-3+i|=4 , then the locus of z is

If |z-1|=|z-3| then the locus of z is

If z=i^(i^(i)) where i=sqrt-1 then |z| is equal to

If |(z-i)/(z+i)|=1 , then the locus of z is

If |z-z_(1)|=|z-z_(2)| then the locus of z is :

Prove that z=i^i, where i=sqrt-1, is purely real.

If |z-i R e(z)|=|z-I m(z)| , then prove that z , lies on the bisectors of the quadrants.

If w=z/[z-(1/3)i] and |w|=1, then find the locus of z

If z= x+iy find the locus of z if |2z+1| = 2 .