Home
Class 11
MATHS
If z is a complex number having least ab...

If `z` is a complex number having least absolute value and `|z-2+2i|=1`,thenz a. `z=` `(2-1//sqrt(2))(1-i)` b. `(2-1//sqrt(2))(1+i)` c. `(2+1//sqrt(2))(1-i)""` d. `(2+1//sqrt(2))(1+i)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Values (s)(-i)^(1/3) is/are (sqrt(3)-i)/2 b. (sqrt(3)+i)/2 c. (-sqrt(3)-i)/2 d. (-sqrt(3)+i)/2

The complex number, z=((-sqrt(3)+3i)(1-i))/((3+sqrt(3)i)(i)(sqrt(3)+sqrt(3)i))

Find the number of complex numbers which satisfies both the equations |z-1-i|=sqrt(2)a n d|z+1+i|=2.

If a ,b ,c are nonzero complex numbers of equal moduli and satisfy a z^2+b z+c=0, hen prove that (sqrt(5)-1)//2lt=|z|lt=(sqrt(5)+1)//2.

Prove that the values of 4sqrt(-1) are pm (1)/(sqrt(2))(1 pm i) .

If |z-(1/z)|=1, then (|z|)_(m a x)=(1+sqrt(5))/2 b. (|z|)_(m in)=(sqrt(5)-1)/2 c. (|z|)_(m a x)=(sqrt(5)-2)/2 d. (|z|)_(m in)=(sqrt(5)-1)/(sqrt(2))

Show that ((i + sqrt(3))/(-i + sqrt(3)))^(2omega) + ((i - sqrt(3))/(i + sqrt(3)))^(2omega) = -1

The solution of the equation |z| -z = 1 + 2i is

If z_(1)= 2sqrt(2)(1+i)" and "z_(2)=1+isqrt(3) , then z_(1)^(2)z_(2)^(3) is equal to