Home
Class 11
MATHS
If |z-1|+|z+3|<=8, then the range of val...

If `|z-1|+|z+3|<=8`, then the range of values of `|z-4|` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If |2z-1|=|z-2|a n dz_1, z_2, z_3 are complex numbers such that |z_1-alpha|lt alpha , |z_2-beta|ltbeta, then= |(z_1+z_2)/ (alpha+beta)| a) lt|z| b.

If |z_1|=|z_2|=|z_3|=1 then value of |z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2 cannot exceed

Find the minimum value of |z-1 if ||z-3|-|z+1||=2.

If |z_1|=|z_2|=|z_3|"…."=|z_n|=1 then |z_(1)+z_(2)+"….."+z_(n)|=

Find the Area bounded by complex numbers arg|z|lepi/4 and |z-1|lt|z-3|

The minimum value of |2z-1|+|3z-2| is

If | z_(1) | = 1, |z_(2)| = 2, |z_(3)| = 3 and |9z_(1)z_(2) + 4z_(1) z_(3) + z_(2) z_(3) = 12|, then the value of |z_(1) + z_(2) + z_(3)| is

If z_1 = 3 + 4i , z_2 = 5 - 12i and z_3 = 6 + 8i , find |z_1|, |z_2|,|z_3|, |z_1 + z_2|,|z_2 - z_3|, and |z_1 + z_3| .

If z is a complex number, then find the minimum value of |z|+|z-1|+|2z-3|dot