Home
Class 11
MATHS
If z1a n dz2 are the complex roots of th...

If `z_1a n dz_2` are the complex roots of the equation `(x-3)^3+1=0,t h e nz_1+z_2` equal to a.`1` b. `3` c. `5` d. 7

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_1a n dz_2 are conjugate to each other then find a r g(-z_1z_2)dot

If z_1a n dz_2 are two nonzero complex numbers such that = |z_1+z_2|=|z_1|+|z_2|, then a rgz_1-a r g z_2 is equal to -pi b. pi/2 c. 0 d. pi/2 e. pi

The common roots of the equation Z^3+2Z^2+2Z+1=0 and Z^1985+Z^100+1=0 are

Let z_1a n dz_2 b be toots of the equation z^2+p z+q=0, where he coefficients pa n dq may be complex numbers. Let Aa n dB represent z_1a n dz_2 in the complex plane, respectively. If /_A O B=theta!=0a n dO A=O B ,w h e r eO is the origin, prove that p^2=4q"cos"^2(theta//2)dot

If alphaa n dbeta are roots of the equation a x^2+b x+c=0, then the roots of the equation a(2x+1)^2-b(2x+1)(x-3)+c(x-3)^2=0 are a. (2alpha+1)/(alpha-3),(2beta+1)/(beta-3) b. (3alpha+1)/(alpha-2),(3beta+1)/(beta-2) c. (2alpha-1)/(alpha-2),(2beta+1)/(beta-2) d. none of these

If z_1a n dz_2 are two complex numbers such that |z_1|=|z_2|a n d arg(z_1)+a r g(z_2)=pi , then show that z_1,=-( barz )_2dot

If z_1, z_2, z_3 are three complex numbers such that 5z_1-13 z_2+8z_3=0, then prove that [(z_1,(bar z )_1, 1),(z_2,(bar z )_2 ,1),(z_3,(bar z )_3 ,1)]=0

If z_1a n dz_2 are two complex numbers and c >0 , then prove that |z_1+z_2|^2lt=(1+c)|z_1|^2+(1+c^(-1))|z_2|^2dot

The system of equations x +2y+3z=1, x-y+4z=0, 2x+y+7z=1 has

Let f(x)=x^3-3(a-2)x^2+3ax+7 and f(x) is increasing in (0,1] and decreasing is [1,5) , then roots of the equation (f(x)-14)/((x-1)^2)=0 is (A) 1 (B) 3 (C) 7 (D) -2