Home
Class 11
MATHS
If |z-1|lt=2a n d|omegaz-1-omega^2|=a wh...

If `|z-1|lt=2a n d|omegaz-1-omega^2|=a` where `omega` is cube root of unity , then complete set of values of `a` is a.`0lt=alt=2` b. `1/2lt=alt=(sqrt(3))/2` c. `(sqrt(3))/2-1/2lt=alt=1/2+(sqrt(3))/2` d. `0lt=alt=4`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 1, omega omega^(2) are the cube roots of unity show that (1 + omega^(2))^(3) - (1 + omega)^(3) = 0

Solve, (sqrt(2x-1))/(x-2) lt 1 .

The solution set of |3x-2| lt 1 is

If omega is a cube root of unity, then the value of (1 - omega + omega^2)^4 + (1 + omega - omega^2)^(4) is ……….

a ,b , c are integers, not all simultaneously equal, and omega is cube root of unity (omega!=1) , then minimum value of |a+bomega+comega^2| is 0 b. 1 c. (sqrt(3))/2 d. 1/2

If a ,b ,c are nonzero complex numbers of equal moduli and satisfy a z^2+b z+c=0, hen prove that (sqrt(5)-1)//2lt=|z|lt=(sqrt(5)+1)//2.

Solve sqrt(x-1)/(x-2) lt 0

If omega(!= 1) be an imaginary cube root of unity and (1+omega^2)=(1+omega^4), then the least positive value of n is (a) 2 (b) 3 (c) 5 (d) 6

If f(x)=sin^(-1)((sqrt(3))/2x-1/2sqrt(1-x^2)),-1/2lt=xlt=1,t h e nf(x) is equal to

If the cube roots of unity are 1, omega, omega^(2) then the roots of the equation (x-1)^(3)+8=0 , are