Home
Class 11
MATHS
If omega is a complex nth root of unity,...

If `omega` is a complex nth root of unity, then `sum_(r=1)^n(ar+b)omega^(r-1)` is equal to
A..`(n(n+1)a)/2`
B. `(n b)/(1+n)`
C. `(n a)/(omega-1)`
D. none of these

Text Solution

Verified by Experts

`E= sum_(r=1)^n(a+b) omega^(r-1)`
`= (a+b) +((2a+b) omega + (3a+b)omega^2 + (4a+b) omega^3 + .... + (na+b)omega^(n-1)`
`=b (1+ omega + omega^2 + .....+ omega^(n-1)) + a(1+ 2omega + 3omega^2 + 4 omega^3 + .... + n omega^(n-1)`
S`= 1 + 2omega + 3omega^2 + 4omega^3 + ..... + nomega^(n-2)`
S`omega= omega + 2omega^2 + 3omega^3 + .... + nomega^n`
subtracting these equations we get
`S(1-omega)= 1+ omega + omega^2 + omega^3 + .... + omega^(n-1) - n omega^n`
`= 0- n omega^n = -n`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is a complex nth root of unity, then underset(r=1)overset(n)(ar+b)omega^(r-1) is equal to

Find the sum of sum_(r=1)^n(r^n C_r)/(n C_(r-1) .

The value of sum_(r=1)^n(-1)^(r+1)("^n C r)/(r+1) is equal to a. -1/(n+1) b. 1/n c. 1/(n+1) d. n/(n+1)

Find the sum sum_(r=1)^n r^2(^n C_r)/(^n C_(r-1)) .

The value of sum_(r=1)^(n+1)(sum_(k=1)^n "^k C_(r-1)) ( where r ,k ,n in N) is equal to a. 2^(n+1)-2 b. 2^(n+1)-1 c. 2^(n+1) d. none of these

If alpha is the nth root of unity, then 1+2alpha+3alpha^2+ ton terms equal to a. (-n)/((1-alpha)^2) b. (-n)/(1-alpha) c. (-2n)/(1-alpha)"" d. (-2n)/((1-alpha)^2)

If n in N >1 , then the sum of real part of roots of z^n=(z+1)^n is equal to n/2 b. ((n-1))/2 c. n/2 d. ((1-n))/2

The coefficient of 1//x in the expansion of (1+x)^n(1+1//x)^n is (n !)/((n-1)!(n+1)!) b. ((2n)!)/((n-1)!(n+1)!) c. ((2n)!)/((2n-1)!(2n+1)!) d. none of these

If omega(!= 1) be an imaginary cube root of unity and (1+omega^2)=(1+omega^4), then the least positive value of n is (a) 2 (b) 3 (c) 5 (d) 6