Home
Class 11
MATHS
If |z-i R e(z)|=|z-I m(z)| , then prove ...

If `|z-i R e(z)|=|z-I m(z)|` , then prove that `z` , lies on the bisectors of the quadrants.

Text Solution

Verified by Experts

`z = x +iy`
`rArr Re (z) = x, Im (z) = y`
`|z - iRe(z)|=|z- Im (z)|`
`rArr |x + iy -ix|=|x + iy -y|`
`rArr x^(2) +(x-y)^(2) = (x-y)^(2) + y^(2)`
`rArr x^(2) = y^(2)`
` rArr |x| = |y|`
Hence, z lies on the bisectors the quadrants.
Promotional Banner

Similar Questions

Explore conceptually related problems

If |z^(2)-1|=|z^(2)|+1 , then z lies on

If |z|=2a n d(z_1-z_3)/(z_2-z_3)=(z-2)/(z+2) , then prove that z_1, z_2, z_3 are vertices of a right angled triangle.

If |(z-i)/(z+i)|=1 , then the locus of z is

Identify locus z if R e(z+1)=|z-1|

If |z-2-i|=|z|sin(pi/4-a r g z)| , where i=sqrt(-1) ,then locus of z, is

If z=x+i ya n dw=(1-i z)//(z-i) , then show that |w|=1 z is purely real.

If |z-3+i|=4 , then the locus of z is

If omega=(z)/(z-(1/3)i)" and "|omega|=1 , then z lies on

If -barz lies in the third quadrant then z lies in the :

If a r g["z"_1("z"_3-"z"_2)]="a r g"["z"_3("z"_2-"z"_1)] , then find prove that O ,z_1, z_2, z_3 are concyclic, where O is the origin.