Home
Class 11
MATHS
The value of z satisfying the equation l...

The value of `z` satisfying the equation `logz+logz^2+dot+logz^n=0 i s` (a)`cos((4mpi)/(n(n+1))+isin((4mpi)/(n(n+1))),m=0,1,2..` (b)`cos(4mpi)/(n(n+1))-isin(4mpi)/(n(n+1)),m=0,1,2..` (c)`sin(4mpi)/(n(n+1))+isin(4mpi)/(n(n+1)),m=0,1,2..` (d) 0

Promotional Banner

Similar Questions

Explore conceptually related problems

If z^(n) = cos"" (n pi)/(3) + isin"" (n pi)/(3), then z_(1), z_(2) …. Z_(6) is

Prove that (1 + i)^(n) + (1 - i)^(n) = 2^((n + 2)/(2)) cos (n pi)/(4)

Prove that tan^(-1)((m)/(n))-tan^(-1)((m-n)/(m+n))=(pi)/(4).

("lim")_(xto0)((2^m+x)^(1/m)-(2^n+x)^(1/n))/x is equal t o (a) 2 (1/(m2^m)-1/(n2^n))' (b) (1/(m2^m)+1/(n2^n)) (c) 1/(m2^(-m))-1/(n2^(-n)) (d) 1/(m2^(-m))+1/(n2^(-n))

If n in N >1 , then the sum of real part of roots of z^n=(z+1)^n is equal to n/2 b. ((n-1))/2 c. n/2 d. ((1-n))/2

Prove that by using the principle of mathematical induction for all n in N : (1)/(1.4)+ (1)/(4.7)+(1)/(7.10)+...+ (1)/((3n-2)(3n+1))= (n)/(3n+1)

The number of real negative terms in the binomial expansion of (1+i x)^(4n-2),n in N ,x >0 is

If tanx=ntany ,n in R^+, then the maximum value of sec^2(x-y) is equal to (a) ((n+1)^2)/(2n) (b) ((n+1)^2)/n (c) ((n+1)^2)/2 (d) ((n+1)^2)/(4n)

The derivative of y=(1-x)(2-x)....(n-x) at x=1 is (a) 0 (b) (-1)(n-1)! (c) n !-1 (d) (-1)^(n-1)(n-1)!