Home
Class 11
MATHS
If sqrt(ab)=sqrt(a)sqrt(b) and a<0 , fin...

If `sqrt(ab)=sqrt(a)sqrt(b)` and `a<0` , find `arg(b+ai)`

Promotional Banner

Similar Questions

Explore conceptually related problems

3 circles of radii a,b,c (a

If a/sqrt(b c)-2=sqrt(b/c)+sqrt(c/b), where a , b , c >0, then the family of lines sqrt(a)x+sqrt(b)y+sqrt(c)=0 passes though the fixed point given by (a) (1,1) (b) (1,-2) (c) (-1,2) (d) (-1,1)

Which of the following is equal to root(3)(-1) a. (sqrt(3)+sqrt(-1))/2 b. (-sqrt(3)+sqrt(-1))/(sqrt(-4)) c. (sqrt(3)-sqrt(-1))/(sqrt(-4)) d. -sqrt(-1)

In the expansion of (3sqrt(a/b)+3sqrt(b/sqrt(a)))^21 , the term containing same powers of a & b is

If y=((a-x)sqrt(a-x)-(b-x)sqrt(x-b))/((sqrt(a-x)+sqrt(x-b)) ,then (dy)/(dx) wherever it is defined is (a) (x+(a+b))/(sqrt((a-x)(x-b))) (b) (2x-a-b)/(2sqrt(a-x)sqrt(x-b)) (c) -((a+b))/(2sqrt((a-x)(x-b))) (d) (2x+(a+b))/(2sqrt((a-x)(x-b)))

If a=sqrt(3),b=1/2(sqrt(6)+sqrt(2))dot and c=2, then find /_A

Prove that (sqrt(2),sqrt(2)) (-sqrt(2), -sqrt(2) ) and (-sqrt(6 ) , sqrt(6)) are ther vertices of an equilateral triangle.