Home
Class 11
MATHS
Roots of the equation are (z+1)^5=(z-1)^...

Roots of the equation are `(z+1)^5=(z-1)^5` are (a) `+-itan(pi/5),+-itan((2pi)/5)` (b)`+-icot(pi/5),+-icot((2pi)/5)` (c)`+-icot(pi/5),+-itan((2pi)/5)` (d)none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Which of the following is/are the value of "cos"[1/2cos^(-1)(cos(-(14pi)/5)]? cos(-(7pi)/5) (b) sin(pi/(10)) cos((2pi)/5) (d) -cos((3pi)/5)

The principal value of sin^(-1)(sin((2pi)/3)) is (a) -(2pi)/3 (b) (2pi)/3 (c) (pi)/3 (d) (5pi)/3 (e) none of these

Find the quadratic equation whose roots are tan ((pi)/(8)) and tan ((5pi)/(8)) ?

Simplify tan^(-1) (tan. (5pi)/6)

The value of cos(pi/7)+cos((2pi)/7)+cos((3pi)/7)+cos((4pi)/7)+cos((5pi)/7)+cos((6pi)/7)+cos((7pi)/7) is 1 (b) -1 (c) 0 (d) none of these

cot ^(2) "" (pi)/(6) + cosec ""(5pi)/(6) + 3 tan ^(2) ""(pi)/(6) =6

Prove that sin (10pi)/(3) cos (13pi)/(6) + cos (8pi)/(3) sin (5pi)/(6) = -1

If roots of the equation 2x^2-4x+2sintheta-1=0 are of opposite sign, then theta belongs to (pi/6,(5pi)/6) (b) (0,pi/6)uu((5pi)/6,pi) ((13pi)/6,(17pi)/6) (d) (0,pi)

2tan^(-1)(-2) is equal to (a) -cos t^(-1)((-3)/5) (b) -pi+cos^(-1)3/5 (c) -pi/2+tan^(-1)(-3/4) (d) -picot^(-1)(-3/4)