Home
Class 11
MATHS
If ((1+i)/(1-i))^(m)=1, then find the le...

If `((1+i)/(1-i))^(m)=1`, then find the least positive integral value of m.

Promotional Banner

Similar Questions

Explore conceptually related problems

Range ofthe function f(x)=cos(Ksin x) is [-1,1] , then the least positive integral value of K will be

If y=m x+c is tangent to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1, having eccentricity 5, then the least positive integral value of m is_____

If z=((1+i)/(1-i))^(9) find z+(1)/(z)

Find the least positive value of x such that 67+x-=1 (mod4)

Find the least positive integer n such that ((1+i)/(1-i))^(n)=1 .

If the straight lines (x-1)/(1)=(y-2)/(2)=(z-3)/(m^(2))and(x-3)/(1)=(y-2)/(m^(2))=(z-1)/(2) are coplanar, find the distinct real values of m.

If z=((sqrt(3)+i)^(17))/((1-i)^(50)) , then find a m p(z)dot

If the straight lines (x-5)/(5m)=(2-y)/(5)=(1-z)/(-1)andx=(2y+1)/(4m)=(1-z)/(-3) are perpendicular to each other, find the value of m.