Home
Class 11
MATHS
If z=i^(i^(i)) where i=sqrt-1 then |z...

If `z=i^(i^(i))` where `i=sqrt-1` then `|z|` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If z = ((sqrt(3) + i)^(3) (3i+4)^(2))/((8 + 6i)^(2)) , then |z| is equal to

The value of sum_(n=1)^(13) (i^n+i^(n+1)) , where i =sqrt(-1) equals (A) i (B) i-1 (C) -i (D) 0

Prove that z=i^i, where i=sqrt-1, is purely real.

If |z-2-i|=|z|sin(pi/4-a r g z)| , where i=sqrt(-1) ,then locus of z, is

If z=((sqrt(3)+i)^(3)(3i+ 4)^(2))/((8+6i)^(2)) , then |z| is equal to

if A=[[i,0] , [0,i]] where i=sqrt(-1) and x epsilon N then A^(4x) equals to:

let z= (-1+sqrt(3i))/2, where i=sqrt(-1) and r,s epsilon P1,2,3}. Let P= [((-z)^r, z^(2s)),(z^(2s), z^r)] and I be the idenfity matrix or order 2. Then the total number of ordered pairs (r,s) or which P^2=-I is

If z=(-1)/(2)+i(sqrt(3))/(2), " then "8+10z+7z^(2) is equal to

Let z_(1)=(2sqrt(3)+ i6sqrt(7))/(6sqrt(7)+ i2sqrt(3))" and "z_(2)=(sqrt(11)+ i3sqrt(13))/(3sqrt(13)- isqrt(11)) . Then |(1)/(z_1)+(1)/(z_2)| is equal to