Home
Class 11
MATHS
If z1a n dz2 are two complex numbers and...

If `z_1a n dz_2` are two complex numbers and `c >0` , then prove that `|z_1+z_2|^2lt=(1+c)|z_1|^2+(1+c^(-1))|z_2|^2dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_1a n dz_2 are complex numbers and u=sqrt(z_1z_2) , then prove that |z_1|+|z_2|=|(z_1+z_2)/2+u|+|(z_1+z_2)/2-u|

If z_1 and z_2 are two complex number such that |z_1|<1<|z_2| then prove that |(1-z_1 bar z_2)/(z_1-z_2)|<1

For any two complex numbers z_1 and z_2 , prove that |z_1+z_2| =|z_1|-|z_2| and |z_1-z_2|>=|z_1|-|z_2|

If z_(1)" and "z_(2) are two complex numbers such that |(z_(1)-z_(2))/(z_(1)+z_(2))|=1 then

If z_(1)" and "z_(2) are two complex numbers such that Im(z_(1)+z_(2))=0, Im(z_(1)z_(2))=0 then

If z_1, z_2, z_3 are three complex numbers such that 5z_1-13 z_2+8z_3=0, then prove that [(z_1,(bar z )_1, 1),(z_2,(bar z )_2 ,1),(z_3,(bar z )_3 ,1)]=0

If z_1a n dz_2 are two nonzero complex numbers such that = |z_1+z_2|=|z_1|+|z_2|, then a rgz_1-a r g z_2 is equal to -pi b. pi/2 c. 0 d. pi/2 e. pi

For any two complex numbers z_(1)" and "z_(2) prove that Im(z_(1)z_(2))=Re(z_1) Im(z_2)+ Im(z_1)Re(z_2) .

If z_1, z_2, z_3 are distinct nonzero complex numbers and a ,b , c in R^+ such that a/(|z_1-z_2|)=b/(|z_2-z_3|)=c/(|z_3-z_1|) Then find the value of (a^2)/(z_1-z_2)+(b^2)/(z_2-z_3)+(c^2)/(z_3-z_1)

If z_(1)" and "z_(2) are two non-zero complex numbers such that |z_(1)+z_(2)|=|z_1|+|z_(2)| , then arg ((z_1)/(z_2)) is equal to