Home
Class 11
MATHS
If z=(a+ib)^5+(b+ia)^5 then prove that R...

If `z=(a+ib)^5+(b+ia)^5` then prove that `Re(z)=Im(z),` where `a,b in R.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=(sqrt(3)/2+i/2)^5+(sqrt(3)/2-i/2)^5 , then prove that Im(z)=0

If z is a complex number such that Re (z) = Im(z), then

If z is a complex number such that Re(z)=Im(z) , then

If z!=0 is a complex number, then prove that R e(z)=0 rArr Im(z^2)=0.

If y^2=x z and a^x=b^y=c^z , then prove that (log)_ab=(log)_bc

If z = (1)/(1 - cos theta - i sin theta), the Re (z)=

If |z-i R e(z)|=|z-I m(z)| , then prove that z , lies on the bisectors of the quadrants.

If n is a positive integer, prove that |I m(z^n)|lt=n|Im(z)||z|^(n-1.)

For any complex number z prove that |R e(z)|+|I m(z)|<=sqrt(2)|z|

If z = x + iy, find in rectangular form. Re ((1)/(z))