Home
Class 11
MATHS
Prove that the circles z bar z +z( bar a...

Prove that the circles `z bar z +z( bar a )_1+bar z( a )_1+b_1=0 ,b_1 in R and z bar z +z( bar a )_2+ bar z a_2+b_2=0,
b_2 in R` will intersect orthogonally if `2R e(a_1( bar a )_2)=b_1+b_2dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Identify the locus of z if bar z = bar a +(r^2)/(z-a).

Find the locus of z if Re ((bar(z) + 1)/(bar(z) - i)) = 0.

If z = x + iy, then z bar(z) =

Intercept made by the circle zbar z +bar a+abar z+r=0 on the real axis on complex plane is a. sqrt((a+ bar a )-r) b. sqrt((a+ bar a )^2-r) c. sqrt((a+ bar a )^2-4r) d. sqrt((a+ bar a )^2-4r)

Let |(( bar z _1)-2( bar z _2))//(2-z_1( bar z _2))|=1 and |z_2|!=1 ,where z_1 and z_2 are complex numbers. Show that |z_1|=2.

Find the radius and centre of the circle z bar(z) - (2 + 3i)z - (2 - 3i)bar(z) + 9 = 0 where z is a complex number

Prove the following properties: z is real if and only if z = bar(z)

Show that the equation z^(3) + 2 bar(z) = 0 has five solutions.