Home
Class 11
MATHS
If the roots of the equation a x^2+b x+c...

If the roots of the equation `a x^2+b x+c=0` are of the form `(k+1)//ka n d(k+2)//(k+1),t h e n(a+b+c)^2` is equal to (a)`2b^2-a c` b. `a 62` c. `b^2-4a c` d. `b^2-2a c`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the roots of the equation a(b-c)x^2+b(c-a)x+c(a-b)=0 are equal, show that 2//b=1//a+1//c dot

If a+b+c=0 then check the nature of roots of the equation 4a x^2+3b x+2c=0 where a ,b ,c in R

The roots of the equation a(b-2c)x^(2)+b(c-2a)x+c(a-2b)=0 are, when ab+bc+ca=0

If alpha,beta are the roots of the equation a x^2+b x+c=0, then the value of aalpha^2+c//aalpha+b+(abeta^2+c)//(abeta+b) is (b(b^2-2a c))/(4a) b. (b^2-4a c)/(2a) c. (b(b^2-2a c))/(a^2c) d. none of these

If a+b+c=0 then check the nature of roots of the equation 4a x^2+3b x+2c=0w h e r ea ,b ,c in Rdot

If sinthetaa n d-costheta are the roots of the equation a x^2-b x-c=0 , where a , ba n dc are the sides of a triangle ABC, then cosB is equal to 1-c/(2a) (b) 1-c/a 1+c/(c a) (d) 1+c/(3a)

If the roots of (a-b)x^(2)+(b-c)x+(c-a)=0 are equal, prove that 2a=b+c .

If a x^2+(b-c)x+a-b-c=0 has unequal real roots for all c in R ,t h e n

If alpha,beta are the roots of the equation a x^2+b x+c=0, then find the roots of the equation a x^2-b x(x-1)+c(x-1)^2=0 in term of alphaa n dbetadot

If a