Home
Class 11
MATHS
On the Argand plane z1, z2a n dz3 are re...

On the Argand plane `z_1, z_2a n dz_3` are respectively, the vertices of an isosceles triangle `A B C` with `A C=B C` and equal angles are `thetadot` If `z_4` is the incenter of the triangle, then prove that `(z_2-z_1)(z_3-z_1)=(1+sectheta)(z_4-z_1)^2dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

z_1, z_2a n dz_3 are the vertices of an isosceles triangle in anticlockwise direction with origin as in center , then prove that z_2, z_1a n d kz_3 are in G.P. where k in R^+dot

If z+1//z=2costheta, prove that |(z^(2n)-1)//(z^(2n)+1)|=|tanntheta|

If the complex numbers z_(1), z_(2)" and "z_(3) denote the vertices of an isoceles triangle, right angled at z_(1), " then "(z_(1)-z_(2))^(2)+(z_(1)-z_(3))^(2) is equal to

If z_0 is the circumcenter of an equilateral triangle with vertices z_1, z_2, z_3 then z_1^2+z_2^2+z_3^2 is equal to

Let z_1, z_2a n dz_3 represent the vertices A ,B ,a n dC of the triangle A B C , respectively, in the Argand plane, such that |z_1|=|z_2|=|z_3|=5. Prove that z_1sin2A+z_2sin2B+z_3sin2C=0.

If z_1, z_2 and z_3 , are the vertices of an equilateral triangle ABC such that |z_1 -i = |z_2 -i| = |z_3 -i| .then |z_1 +z_2+ z_3| equals:

Let vertices of an acute-angled triangle are A(z_1),B(z_2),a n dC(z_3)dot If the origin O is he orthocentre of the triangle, then prove that z_1( bar z )_2+( bar z )_1z_2=z_2( bar z )_3+( bar z )_2z_3=z_3( bar z )_1+( bar z )_(3)z_1

If z_1a n dz_2 are two complex numbers and c >0 , then prove that |z_1+z_2|^2lt=(1+c)|z_1|^2+(1+c^(-1))|z_2|^2dot

Suppose z_(1),z_(2)andz_(3) are the vertices of an equilateral triangle inscribed in the circle |z| = 2. If z_(1)=1+isqrt3 then find z_(2)andz_(3) .

If z_1a n dz_2 are conjugate to each other then find a r g(-z_1z_2)dot