Home
Class 11
MATHS
ifomegaa n domega^2 are the nonreal cube...

if`omegaa n domega^2` are the nonreal cube roots of unity and `[1//(a+omega)]+[1//(b+omega)]+[1//(c+omega)]=2omega^2` and `[1//(a+omega)^2]+[1//(b+omega)^2]+[1//(c+omega)^2]=2omega^` , then find the value of `[1//(a+1)]+[1//(b+1)]+[1//(c+1)]dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is a non real cube root of unity, then (a+b)(a+b omega)(a+b omega^2)=

If 1, omega omega^(2) are the cube roots of unity show that (1 + omega^(2))^(3) - (1 + omega)^(3) = 0

If 1, omega omega^(2) are the cube roots of unity then show that (1 + 5omega^(2) + omega^(4)) ( 1 + 5omega + omega^(2)) ( 5 + omega + omega^(5)) = 64.

If omega is a cube root of unity and (omega-1)^7=A+Bomega then find the values of A and B

If omega pm 1 is a cube root of unity, show that (a + b omega + c omega^(2))/(b + c omega + a omega^(2))+ (a + b omega + c omega^(2))/(c + a omega + b omega^(2)) = -1

If omega is the cube root of unity, then then value of (1 - omega) (1 - omega^(2))(1 - omega^(4))(1 - omega^(8)) is

If omega is an imaginary cube root of unity, then (1+omega-omega^2)^7 is equal to (a) 128omega (b) -128omega (c) 128omega^2 (d) -128omega^2

If omega is a cube root of unity, then find the value of the following: (1+omega-omega^2)(1-omega+omega^2)

If omega is a cube root of unity, then the value of (1 - omega + omega^2)^4 + (1 + omega - omega^2)^(4) is ……….