Home
Class 11
MATHS
If omega is a cube root of unity, then f...

If `omega` is a cube root of unity, then find the value of the following: `(1+omega-omega^2)(1-omega+omega^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is the cube root of unity, then then value of (1 - omega) (1 - omega^(2))(1 - omega^(4))(1 - omega^(8)) is

If omega is a cube root of unity, then the value of (1 - omega + omega^2)^4 + (1 + omega - omega^2)^(4) is ……….

If omega is an imaginary fifth root of unity, then find the value of log_2|1+omega+omega^2+omega^3-1//omega|dot

If omega is a complex cube root of unity, then the value of sin{(omega^(10)+omega^(23))pi- (pi)/(6)} is

If omega pm 1 is a cube root of unity, show that (1 - omega + omega^(2))^(6) + (1 + omega - omega^(2))^(6) = 128

If omega is the cube root of unity then Assertion : (1-omega+omega^(2))^(6)+(1+omega-omega^(2))^(6)=128 Reason : 1+omega+omega^(2)=0

If omega is a cube root of unity and (omega-1)^7=A+Bomega then find the values of A and B

If omega pm 1 is a cube root of unity, show that (1 + omega) (1 + omega^(2))(1 + omega^(4))(1 + omega^(8))…(1 + omega^(2^(11))) = 1

If omega ne 1 is a cube root of unity, show that (i) (1-omega+omega^(2))^(6)+(1+omega-omega^(2))^(6)=128 (ii) (1+omega)(1+omega^(2))(1+omega^(4))(1+omega^(8))…2n terms=1

If omega ne 1 is a cube root of unity, then show that (a+bomega+comega^(2))/(b+comega+aomega^(2))+(a+bomega+comega^(2))/(c+aomega+bomega^(2))=1