Home
Class 11
MATHS
Find the value of 1+i^2+i^4+i^6++i^(2n)...

Find the value of `1+i^2+i^4+i^6++i^(2n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (1 + i)^(4) + (1 -i)^(4) is

Find the principal value of -2i

The value of (1 + i)( 1 + i^(2) ) (1 + i^(3)) (1 + i^(4)) is

Find the values of the real numbers x and y, if the complex numbers (3 - i) x - (2-i) y + 2i + 5 and 2x + (-1 + 2i)y + 3 + 2i are equal

If A , B ,C are angles of a triangles, then the value of |[e^(2i A),e^(-i C),e^(-i B)],[e^(-i C),e^(2i B),e^(-i A)],[e^(-i B),e^(-i A),e^(2i C)]| is 1 b. -1 c. -2 d. -4

Suppose A and B are two non singular matrices such that B != I, A^6 = I and AB^2 = BA . Find the least value of k for B^k = 1

Find the modulus or the absolute value of ((1 + 3i)(1 - 2i))/((3 + 4i))

(i) If i= sqrt(-1) , find the sum of i+i^(2)+i^(3)+"…….."i^(99) (ii) Convert (1-i)/(cos ""(pi)/(4)+ isin ""(pi)/(4)) into (a) a+ib (b) polar form.

The value of sum_(i=1)^(13) (n^(n) + i^(n-1)) is