Home
Class 11
MATHS
Show that the minimum value of (x+a)(x+b...

Show that the minimum value of `(x+a)(x+b)//(x+c)dotw h e r ea > c ,b > c ,` is `(sqrt(a-c)+sqrt(b-c))^2` for real values of `x > -c`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the minimum value of ((a+x)(b+x))/((c+x))a ,b > c ,x >-c is (sqrt(a-c)+sqrt(b-c))^2

The minimum value of P=b c x+c a y+a b z , when x y z=a b c , is

Find the minimum value of (sec^(-1)x)^2+("c o s e c"^(-1)x)^2

The minimum value of e^(2x^2-2x+1)sin^2x is e (b) 1/e (c) 1 (d) 0

Minimum value of (b+c)//a+(c+a)//b+(a+b)//c (for real positive numbers a ,b ,c) is (a) 1 (b) 2 (c) 4 (d) 6

Solve the equation |a-x c b c b-x a b a c-x|=0w h e r ea+b+c!=0.

If c!=0 and the equation p//(2x)=a//(x+c)+b//(x-c) has two equal roots, then p can be (sqrt(a)-sqrt(b))^2 b. (sqrt(a)+sqrt(b))^2 c. a+b d. a-b

Prove that a^4+b^4+c^4> a b c(a+b+c),w h e r ea ,b ,c > 0.

If a ,b ,c in R^+ , then the minimum value of a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2) is equal to (a) a b c (b) 2a b c (c) 3a b c (d) 6a b c

If fig shows the graph of f(x)=a x^2+b x+c ,t h e n Fig A) a c 0 c) a b >0 d ) a b c<0