Home
Class 11
MATHS
Let f(x)=a x^2+b x+c. Consider the foll...

Let `f(x)=a x^2+b x+c. Consider the following diagram. Then Fig `c<0` `b >0` `a+b-c >0` `a b c<0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(X) = ax^(2) + bx + c . Consider the following diagram .

Let f(x) = ax^(2) - bx + c^(2), b ne 0 and f(x) ne 0 for all x in R . Then

Let f(x)=ax^2-bx+c^2 != 0 and f(x) != 0 for all x in R. Then (a) a^2+c^2 2 (b) c (c) a-3b+c^2 < 0 (d) non of these

Let the parabolas y=x(c-x)a n dy=x^2+a x+b touch each other at the point (1,0). Then (a) a+b+c=0 (b) a+b=2 (c) b-c=1 (d) a+c=-2

If fig shows the graph of f(x)=a x^2+b x+c ,t h e n Fig A) a c 0 c) a b >0 d ) a b c<0

Let f(x)=a x^2+b x+a ,b ,c in Rdot If f(x) takes real values for real values of x and non-real values for non-real values of x , then a=0 b. b=0 c. c=0 d. nothing can be said about a ,b ,cdot

Let f(x)=(ax + b )/(cx+d) . Then the fof (x)=x , provided that : (a!=0, b!= 0, c!=0,d!=0)

Let f(x)=(1+b^2)x^2+2b x+1 and let m(b) the minimum value of f(x) as b varies, the range of m(b) is (A) [0,1] (B) (0,1/2] (C) [1/2,1] (D) (0,1]

Let f(x)=a^2+b x+c where a ,b , c in Ra n da!=0. It is known that f(5)=-3f(2) and that 3 is a root of f(x)=0. then find the other of f(x)=0.

If a >0 and discriminant of a x^2+2b x+c is negative, then =a b a x+bb c b x+c a x+bb x+c0 is +v e b. (a c-b)^2(a x^2+2b x+c) c. -v e d. 0