Home
Class 11
MATHS
Show that the equation A^2//(x-a)+B^2//(...

Show that the equation `A^2//(x-a)+B^2//(x-b)+C^2//(x-c)+...+H^2//(x-h)=k` has no imaginary root, where `A ,B ,C ,..... ,Ha n da ,b ,c ,........ ,ha n dk in Rdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the equation x^(2)(a^(2)b^(2))+2x(ac+bd)+(c^(2)+d^(2))=0 has no real root if adnebc .

The quadratic equation (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 has equal roots if

If c ne 0 and p/(2x)= a/(x+c) + b/(x-c) has two equal roots, then find p.

If the equation (b^2 + c^2) x^2 -2 (a+b) cx + (c^2 + a^2) = 0 has equal roots, then

if ax^2+bx+c = 0 has imaginary roots and a+c lt b then prove that 4a+c lt 2b

If c!=0 and the equation p//(2x)=a//(x+c)+b//(x-c) has two equal roots, then p can be (sqrt(a)-sqrt(b))^2 b. (sqrt(a)+sqrt(b))^2 c. a+b d. a-b

If a ,b in R ,a!=0 and the quadratic equation a x^2-b x+1=0 has imaginary roots, then (a+b+1) is a. positive b. negative c. zero d. Dependent on the sign of b

The roots of the equation a(b-2c)x^(2)+b(c-2a)x+c(a-2b)=0 are, when ab+bc+ca=0

If the equations a x^2+b x+c=0a n dx^3+3x^2+3x+2=0 have two common roots, then a. a=b=c b. a=b!=c c. a=-b=c d. none of these

If a x^2+(b-c)x+a-b-c=0 has unequal real roots for all c in R ,t h e n