Home
Class 11
MATHS
Suppose A, B, C are defined as A=a^2b+a ...

Suppose A, B, C are defined as `A=a^2b+a b^2-a^2c-a c^2, B=b^2c+b c^2-a^2b-a b^2, and `
`C=a^2c+a c^2-b^2c-b c^2, w h e r ea > b > c >0` and the equation `A x^2+B x+C=0` has equal roots, then `a ,b ,c` are in `
` `AdotPdot` b. `GdotPdot` c. `HdotPdot` d. `AdotGdotPdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the equation (b^2 + c^2) x^2 -2 (a+b) cx + (c^2 + a^2) = 0 has equal roots, then

Show that: |b^2+c^2a b a c b a c^2+a^2b cc a c b a^2+b^2|=4a^2b^2c^2

If a+b+c=0 then check the nature of roots of the equation 4a x^2+3b x+2c=0w h e r ea ,b ,c in Rdot

If a ,b ,c are non zero (a b c^2)x^2+3a^2c x+b^2c x-6a^2-a b+2b^2=0 are rational.

If a+b+c=0 then check the nature of roots of the equation 4a x^2+3b x+2c=0 where a ,b ,c in R

In triangle A B C ,2a csin(1/2(A-B+C)) is equal to a^2+b^2-c^2 (b) c^2+a^2-b^2 (c) b^2-c^2-a^2 (d) c^2-a^2-b^2

Prove the identities: |b^2+c^2a b a c b a c^2+a^2b cc a c b a^2+b^2|=4a^2b^2c^2

If A,B,C, are the angles of a triangle such that cotA/2=3tanC/2, then sinA ,sinB ,sinC are in AdotPdot (b) GdotPdot (c) HdotPdot (d) none of these

Express =|2b c-a^2c^2b^2c^2 2c a-b^2a^2b 62a^2 2a b-c^2| as square of a determinant of hence evaluate if.

If a , b , c are positive numbers such that a gt b gt c and the equation (a+b-2c)x^(2)+(b+c-2a)x+(c+a-2b)=0 has a root in the interval (-1,0) , then