Home
Class 11
MATHS
(C0+C1)(C1+C2)(C2+C3)(C3+C4)...........(...

`(C_0+C_1)(C_1+C_2)(C_2+C_3)(C_3+C_4)...........(C_(n-1)+C_n)=`
`(C_0C_1C_2.....C_(n-1) (n+1)^n)/(n!)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If C_(r) = .^(n)C_(r) then prove that (C_(0) + C_(1)) (C_(1) + C_(2)) "….." (C_(n-1) + C_(n)) = (C_(1)C_(2)"…."C_(n-1)C_(n))(n+1)^(n)//n!

C_(1) + 4.C_(2) + 7.C_(3) +......+(3n - 2).C_(n) =

if (1 + C_(1)/C_(0))(1 + C_(2)/C_(1)) (1 + C_(3)/C_(2)) ...... (1 + C_(n)/C_(n - 1))is

If (1+x)^n=C_0+C_1x+C2x2++C_n x^n , t h e n 'C_0-(C_0+C_1+)+(C_0+C_1+C_2)-(C_0+C_1+C_2+C_3)+(-1)^(n-1)(C_0+C_1+ C_(n-1))',w h e r e n is

If for z as real or complex, (1+z^2+z^4)^8=C_0+C1z2+C2z4++C_(16)z^(32)t h e n (a) C_0-C_1+C_2-C_3++C_(16)=1 (b) C_0+C_3+C_6+C_9+C_(12)+C_(15)=3^7 (c) C_2+C_5+C_6+C_(11)+C_(14)=3^6 (d) C_1+C_4+C_7+C_(10)+C_(13)+C_(16)=3^7

If (1+x)^n=C_0+C_1x+C_2x^2++C_n x^n ,t h e nC_0C_2+C_1C_3+C_2C_4++C_(n-2)C_n= ((2n)!)/((n !)^2) b. ((2n)!)/((n-1)!(n+1)!) c. ((2n)!)/((n-2)!(n+2)!) d. none of these

If (1 - x)^(n) = C_(0) + C_(1)x + C_(2)x^(2) + ......... + C_(n)x^(n) , then the value of 1.C_(1) + 2.C_(3) + 3.C_(3) + ......... + n.C_(n) =

Prove that (C_1)/1-(C_2)/2+(C_3)/3-(C_4)/4++((-1)^(n-1))/n C_n=1+1/2+1/3++1/ndot

The value of C(n, 0) - C(n, 1) + C(n, 2) - C(n, 3) +.......+(-1)^(n)C(n, n) =

In a n- sided regular polygon, the probability that the two diagonal chosen at random will intersect inside the polygon is (2^n C_2)/(^(^(n C_(2-n)))C_2) b. (^(n(n-1))C_2)/(^(^(n C_(2-n)))C_2) c. (^n C_4)/(^(^(n C_(2-n)))C_2) d. none of these