Home
Class 11
MATHS
Prove that sum(alpha+beta+gamma = 10) (1...

Prove that `sum_(alpha+beta+gamma = 10) (10 !)/(alpha!beta!gamma!)=3^(10)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma, in (0,pi/2) , then prove that (s i(alpha+beta+gamma))/(sinalpha+sinbeta+singamma)<1

If cos alpha + cos beta + cos gamma = sin alpha + sin beta + sin gamma = 0 , show that sin 3alpha + sin 3 beta + sin 3gamma = 3 sin (alpha + beta + gamma)

If cos alpha + cos beta + cos gamma = sin alpha + sin beta + sin gamma = 0 , show that cos 3alpha + cos 3 beta + cos gamma = 3 cos (alpha + beta + gamma) and

Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)

If cosalpha+cosbeta+cosgamma=0a n da l sosinalpha+sinbeta+singamma=0, then prove that cos2alpha+cos2beta+cos2gamma =sin2alpha+sin2beta+sin2gamma=0 sin3alpha+sin3beta+sin3gamma=3sin(alpha+beta+gamma) cos3alpha+cos3beta+cos3gamma=3cos(alpha+beta+gamma)

If alpha,beta,gamma are different from 1 and are the roots of a x^3+b x^2+c x+d=0a n d(beta-gamma)(gamma-alpha)(alpha-beta)=(25)/2 , then prove that |alpha/(1-alpha)beta/(1-beta)gamma/(1-gamma)alphabetagammaalpha^2beta^2gamma^2|=(25 d)/(2(a+b+c+d))

Given alpha+beta-gamma=pi, prove that sin^2alpha+sin^2beta-sin^2gamma=2sinalphasinbetacosgammadot

If alpha,beta,gamma,delta are four complex numbers such that gamma/delta is real and alpha delta - beta gamma !=0 then z = (alpha + beta t)/(gamma+ deltat) represents a A) circle B) parabola C)Ellipse D)straight line

If alpha, beta, gamma and delta are the roots of the polynomial eqauation 2x^4 + 5x^3 - 7x^2 - 8 = 0 , find a quadratic equation with integer corddicients whose roots are alpha + beta + gamma + delta and alpha beta gamma delta .

If cos (alpha - beta) + cos (beta - gamma) + cos (gamma - alpha) = (-3)/(2) then prove that cos alpha + cos beta+ cos gamma = sin alpha + sin beta + sin gamma = 0 .