Home
Class 11
MATHS
If tan^(-1)(sqrt(1+x^2-1))/x=4^0 then...

If `tan^(-1)(sqrt(1+x^2-1))/x=4^0` then

Promotional Banner

Similar Questions

Explore conceptually related problems

The derivative of tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)((2xsqrt(1-x^2))/(1-2x^2)) at x=0 is 1/8 (b) 1/4 (c) 1/2 (d) 1

y=tan^(-1)(x/(1+sqrt(1-x^2)))

If u=tan^(-1)""(sqrt(1+x^(2))-1)/x " and " v=tan^(-1)x, " find " (du)/(dv) .

If u = tan^(-1)"" (sqrt ( 1+x^2)-1)/(x) and v = tan^(-1) x , find (du)/(dv)

"F i n d"(dy)/(dx)"if"y=tan^(-1)((sqrt(1+x^2)-1)/x), where x!=0

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x)w.r.t tan^(-1)x ,w h e r ex!=0.

tan^(- 1)((sqrt(1+a^2x^2)-1)/(a x)) where x!=0, is equal to

If tan^(-1)((sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))))=alpha" then prove that "x^(2)=sin2alpha.