Home
Class 11
MATHS
If y=f(a^x)a n df^(prime)(sinx)=(log)e x...

If `y=f(a^x)a n df^(prime)(sinx)=(log)_e x ,t h e nfin d(dy)/(dx),` if it exists, where `pi/2

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sqrt(log{sin((x^2)/3-1)}) , t h e n find (dy)/(dx)dot

If x y+y^2=tanx+y ,t h e n(dy)/(dx)dot

If y=sqrt((a-x)(x-b))- (a-b)tan^(-1)sqrt((a-x)/(x-b)),t h e nfin d(dy)/(dx)dot

If u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,a n dg^(prime)(x)=sinx ,t h e n(d u)/(d v) is

y = a sinx log_(10)x + e^(2x), find dy/dx.

x y=(x+y)6na n d(dy)/(dx)=y/x t h e nn= 1 b. 2 c. 3 d. 4

Let y=e^(x sin x^3)+(t a n x)^x Find (dy)/(dx)

If f: R^+vecR ,f(x)+3xf(1/x)=2(x+1),t h e nfin df(x)dot

If x=e^(y+e^(y+e^y....oo) , where x > 0,then find (dy)/(dx)

If y=cos(sinx^(2)), " then " (dy)/(dx) " at " x=sqrt(pi/2) is