Home
Class 11
MATHS
Find the value of sumsum(1leilejlt=n-1)(...

Find the value of `sumsum_(1leilejlt=n-1)(ij)^n c_i^n"" c_jdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of sumsum_(0lt=i

Find the sum sumsum_(0lt=ilt=jlt=n)^ nC_i^n C_j

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , then the value of (sumsum)_(0leiltjlen) (i/(""^(n)C_(i))+j/(""^(n)C_(j)))

The value of sum_(i=1)^(13) (n^(n) + i^(n-1)) is

Find the sum sumsum_(i!=j)^ nC_i^n C_j

Find the value of sum_(p=1)^n(sum_(m=p)^n^n C_m^m C_p)dot And hence, find the value of (lim)_(nvecoo)1/(3^n)sum_(p=1)^n(sum_(m=p)^n^n C_m^m C_p)dot

Find the sum sum_(i=0)^r.^(n_1)C_(r-i) .^(n_2)C_i .

If (1+x)^n=C_0+C_1x+C_2x^2+.......+C_n x^n , then show that the sum of the products of the coefficients taken two at a time, represented by sumsum_(0lt=iltjlt=n) "^nc_i "^n c_j is equal to 2^(2n-1)-((2n)!)/ (2(n !)^2)

Find the sum of sum_(r=1)^n(r^n C_r)/(n C_(r-1) .