Home
Class 11
MATHS
If f(x)=cosxdotcos2xdotcos4xdotcos8xdotc...

If `f(x)=cosxdotcos2xdotcos4xdotcos8xdotcos16 x ,` then find `f^(prime)(pi/4)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)

Let f: R->R satisfying |f(x)|lt=x^2,AAx in R be differentiable at x=0. Then find f^(prime)(0)dot

Iff(x)=int_((x^2)/(16))^(x^2)(sinxsinsqrt(theta))/(1+cos^2sqrt(theta))dtheta, then find the value of f^(prime)(pi/2)dot

Let f be a function such that f(x+y)=f(x)+f(y) for all xa n dya n df(x)=(2x^2+3x)g(x) for all x , where g(x) is continuous and g(0)=3. Then find f^(prime)(x)dot

Find the range of f(x)=1/(4cosx-3)dot

Iff(x)=e^(g(x))a n dg(x)=int_2^x(tdt)/(1+t^4), then find the value of f^(prime)(2)

Let f(x)=intx^(sinx)(1+xcosxdotlnx+sinx)dxa n df(pi/2)=(pi^2)/4dot Then the value of |"cos"(f(pi))| is____

Let f(x)=2cos e c2x+secx+cos e cxdot Then find the minimum value of f(x)forx in (0,pi/2)dot

L e t f(x)=(1-tanx)/(4x-pi),x!=pi/4,x in [0,pi/2], If f(x)i s continuous in [0,pi/4], then find the value of f(pi/4)dot

Let f(x),xgeq0, be a non-negative continuous function. If f^(prime)(x)cosxlt=f(x)sinxAAxgeq0, then find f((5pi)/3)