Home
Class 11
MATHS
f(x)=e^(-1/x),w h e r ex >0, Let for eac...

`f(x)=e^(-1/x),w h e r ex >0,` Let for each positive integer `n ,P_n` be the polynomial such that `(d^nf(x))/(dx^n)=P_n(1/x)e^(-1/x)` for all `x > 0.` Show that `P_(n+1)(x)=x^2[P_n(x)-d/(dx)P_n(x)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Determine a positive integer nlt=5 such that int_0^1e^x(x-1)^n=16-6e

If f(x) =(p-x^n)^(1/n) , p >0 and n is a positive integer then f[f(x)] is equal to

if f(x)=(a-x^n)^(1/n), where a > 0 and n is a positive integer, then f(f(x))= (i) x^3 (ii) x^2 (iii) x (iv) -x

If P(1)=0a n d(d P(x))/(dx)gtP(x) , for all xge1 . Prove that P(x)>0 for all x>1.

If f(x)={x^2, for xgeq1x ,for x<0 ,t h e n fof(x) is given by

If f(x)=x/(sinx)a n dg(x)=x/(tanx),w h e r e0ltxlt=1, then in this interval

Prove that (d^n)/(dx^n)(e^(2x)+e^(-2x))=2^n[e^(2x)+(-1)^n e^(-2x)]

Find the coefficient of x^n in the polynomial (x+^n C_0)(x+3^n C_1)xx(x+5^n C_2)[x+(2n+1)^n C_n]dot

Evaluate int f(x) is polynomaial function of then the degree, prove that int e^x f(x) dx=e^x[f(x) f'(x)+f^x=f^x+......+(-1)^n f^n (x)] where f^n(x) dx+(d^nf)/(dx^n)