Home
Class 11
MATHS
If x in (0,pi/2), then show that cos^(-1...

If `x in (0,pi/2),` then show that `cos^(-1)(7/2(1+cos2x)+sqrt((sin^2x-48cos^2x))sinx)=x-cos^(-1)(7cosx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1)(2cos^(2)x-1)+cos^(-1)(1-2sin^(2)x)=

Show that : tan (cos^(-1)x) = (sqrt(1-x^(2)))/x

If x lt 0 , then prove that cos^(-1) x = pi - sin^(-1) sqrt(1 - x^(2))

If x in (0,pi//2) , then the function f(x)= x sin x +cosx +cos^(2)x is

int(1+cos2x)/(sin^(2)2x)dx :

prove that 1-1/2(sin2x)=(sin^3 x +cos^3 x)/(sinx +cosx)

Show that sin^-1 x+cos^-1 x=pi/2 .

cos^(-1){1/2x^(2)+sqrt(1+x^(2))sqrt(1-x^(2))/(4)}=cos^(-1)(x)/(2)-cos^(-1)x