Home
Class 11
MATHS
If log(x^2+y^2)=2tan^(-1)(y/x), show th...

If `log(x^2+y^2)=2tan^(-1)(y/x),` show that `(dy)/(dx)=(x+y)/(x-y)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve (dy)/(dx)=(x-y+5)/(2(x-y)+7)

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2

(a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

If y= sin^(-1)x , show that (1-x^(2)) (d^(2)y)/(dx^(2))-x(dy)/(dx)0 .

If y=e^(tan^(-1)x) , show that (1+x^(2))y''+(2x-1)y'=0 .

If y=e^(tan^(-1)x) , show that (1+x^(2))y''+(2x-1)y'=0

Solve (dy)/(dx)=((x+y)^2)/((x+2)(y-2))

if y = x^(x^2), show that dy/dx = x^(x^(2))x(1+2logx)