Home
Class 11
MATHS
Let y=sqrt(x+sqrt(x+sqrt(x+oo))) , (dy)...

Let `y=sqrt(x+sqrt(x+sqrt(x+oo)))` , `(dy)/(dx)` is equal to (a)`1/(2y-1)` (b) `x/(x+2y)` (c)`1/(sqrt(1+4x)` (d) `y/(2x+y)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sqrt(logx+sqrt(logx+sqrt(logx+oo))),t h e n(dy)/(dx)i s (a) x/(2y-1) (b) x/(2y+1) (c) 1/(x(2y-1)) (d) 1/(x(1-2y))

If y=(sqrt(a+x)-sqrt(a-x))/(sqrt(a+x)+sqrt(a-x)) ,then (dy)/(dx) is equal to (a) (a y)/(xsqrt(a^2-x^2)) (b) (a y)/(sqrt(a^2-x^2)) (c) (a y)/(xsqrt(a^2-x^2)) (d) none of these

If sqrt(x) + sqrt(y)=4,then (dx)/(dy)at y=1.

If y=e^(sqrt(x))+e^(-sqrt(x)) , then (dy)/(dx) is equal to (a) (e^(sqrt(x)))/(2sqrt(x)) (b) (e^(sqrt(x))-e^(-sqrt(x)))/(2x) 1/(2sqrt(x))sqrt(y^2-4) (d) 1/(2sqrt(x))sqrt(y^2+4)

If y="sec"(tan^(-1)x), then (dy)/(dx) at x=1 is equal to: 1/(sqrt(2)) (b) 1/2 (c) 1 (d) sqrt(2)

If y="sec"(tan^(-1)x), then (dy)/(dx) at x=1 is equal to: 1/(sqrt(2)) (b) 1/2 (c) 1 (d) sqrt(2)

Given y=(5x)/(3sqrt((1-x)^2 ))+sin^2(2x+1), (dy)/(dx)

y=tan^(-1)(x/(1+sqrt(1-x^2)))

If y = sqrt(x+sqrt(x+sqrt(x+sqrt(x)))) to infty, find dy/dx :

If y=sqrt(x+1)+sqrt(x-1) , prove that sqrt(x^(2)-1)(dy)/(dx)=1/2y