Home
Class 11
MATHS
If x^y=e^(x-y), Prove that (dy)/(dx)=(lo...

If `x^y=e^(x-y),` Prove that `(dy)/(dx)=(logx)/((1+logx)^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=e^(cos2t) and y=e^(sin2t) , prove that (dy)/(dx)=-(ylogx)/(xlogy)

If x y=e^((x-y)), then find (dy)/(dx)

(a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

Solve x((dy)/(dx))=y(logy-logx+1)

(dy)/(dx)+(y)/(xlogx)=(sin2x)/(logx)

int(1)/(x(logx)log(logx))dx=

Solve the equation (dy)/(dx)+1/x=(e^y)/(x^2)

x(dy)/(dx)+2y-x^(2)logx=0

Solve (dy)/(dx)+2y=e^(-x)