Home
Class 11
MATHS
Prove that (r+1)^n Cr-r^n Cr+(r-1)^n C2-...

Prove that `(r+1)^n C_r-r^n C_r+(r-1)^n C_2-^n C_3++(-1)^r^n C_r = (-1)^r^(n-2)C_rdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ""^(n)C_r + ""^(n)C_(r-1) = ""^(n+1)C_r

Prove that .^(n)C_(0) - ^(n)C_(1) + .^(n)C_(2)- ^(n)C_(3) + "…" + (-1)^(r) + .^(n)C_(r) + "…" = (-1)^(r ) xx .^(n-1)C_(r ) .

Prove that "^n C_r+^(n-1)C_r+...+^r C_r=^(n+1)C_(r+1) .

The value of determinant |[ ^n C_(r-1), ^n C_r, (r+1)^(n+2)C_(r+1)],[ ^n C_r, ^n C_(r+1),(r+2)^(n+2)C_(r+2)],[ ^n C_(r+1), ^n C_(r+2), (r+3)^(n+2)C_(r+3)]| is n^2+n-2 b. 0 c. ^n+3C_(r+3) d. ^n C_(r-1)+^n C_r+^n C_(r+1)

The roots of the equation |^x C_r^(n-1)C_r^(n-1)C_(r-1)^(x+1)C_r^n C_r^n C_(r-1)^(x+2)C_r^(n+1)C_r^(n+1)C_(r-1)|=0 are x=n b. x=n+1 c. x=n-1 d. x=n-2

Show that |^x C_r^x C_(r+1)^x C_(r+2)^y C_r^y C_(r+1)^y C_(r+2)^z C_r^z C_(r+1)^z C_(r+1)|=|^x C_r^(x+1)C_(r+1)^(x+2)C_(r+2)^y C_r^(y+1)C_(r+1)^(y+2)C_(r+2)^z C_r^(z+1)C_(r+1)^(z+2)C_(r+1)| .

Prove that ""^(n-1)P_r+r^(n-1)p_r-1=^nP_r dot""

Prove that sum_(r=0)^(2n)r(.^(2n)C_r)^2=n^(4n)C_(2n) .

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^ s C_r=3^n-1.

Prove that sum_(r=0)^n^n C_rsinr xcos(n-r)x=2^(n-1)sin(n x)dot