Home
Class 11
MATHS
Find the value of ^4n C0+^(4n)C4+^(4n)C8...

Find the value of `^4n C_0+^(4n)C_4+^(4n)C_8++""^(4n)C_(4n)` .

Text Solution

Verified by Experts

`because 4 - 0 = 8 - 4 = …= 4 `
` therefore ` Four roots of unity `(1)^(1/4) ` are 1, - 1, -I , we have
` (1 + x)^(4n) = ""^(4n)C_(0) + ""^(4n)C_(1) x + ""^(4nC_(4) x^(2) + ""^(4n)C_(3)x^(3) + …`
Putting x = 1 , I , - I and then adding , we get
` 4 (""^(4n)C_(0) + ""^(4n)C_(4) + ""^(4n)C_(8) + ...) = 2^(4n) + 0 + (1 + i)^(4n) + (1 - i)^(4n) `
`= 3^(4n) + (2i)^(2n) + (-2i)^(2n)`
` 2^(4n) + 2^(2n) (-1)^(n) + 2^(2n) (-1)^(n)`
` = 2^(4n) + (-1)^(n)* 2^(2n +1)`
` therefore ""^(2n)C_(0) + ""^(4n)C_(4) + ""^(4n)C_(8) + ...= 2^(4n-2) + (-1)^(n) * 2^(2n-1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If ""^(n)C_(4)=""^(n)C_(6) find ""^(12)C_(n) .

Find the sum sum_(j=0)^(n) (""^(4n+1)C_(j)+""^(4n+1)C_(2n-j)) .

The value of .^(n)C_(0) xx .^(2n)C_(r) - .^(n)C_(1)xx.^(2n-2)C_(r)+.^(n)C_(2)xx.^(2n-4)C_(r)+"…." is equal to

Find the sum ^n C_0+^n C_4+^n C_8+.......

If ""^(n)C_(9)=""^(n)C_(8) , find ""^(n)C_(17) .

If the value of "^(n)C_(0)+2*^(n)C_(1)+3*^(n)C_(2)+...+(n+1)*^(n)C_(n)=576 , then n is

Find the sum 1.^(n)C_(0) + 3 .^(n)C_(1) + 5.^(n)C_(2) + "….." + (2n+1).^(n)C_(n) .

If ""^(n)C_(8)=""^(n)C_(2) , find ""^(n)C_(2) .

Prove that ^n C_0 ^(2n)C_n- ^n C_1 ^(2n-2)C_n+ ^n C_2^(2n-4)C_n-=2^ndot

Find the sum 3^n C_0-8^n C_1+13^n C_2 - 18^n C_3+..