Home
Class 11
MATHS
If x^m y^n=(x+y)^(m+n),prove (dy)/(dx)=y...

If `x^m y^n=(x+y)^(m+n),prove (dy)/(dx)=y/xdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(m)y^(n) = (x+y)^(m+n),find dy/dx.

If x^y=e^(x-y), Prove that (dy)/(dx)=(logx)/((1+logx)^2)

Find (dy)/(dx) for y=x^xdot

Solve ((dy)/(dx))+(y/x)=y^3

If x y+y^2=tanx+y ,t h e n(dy)/(dx)dot

If y=x+1/(x+1/(x+1/(x+\ dot))) , prove that (dy)/(dx)=y/(2y-x) .

If cos y = x cos (a+y) Then prove that (dy)/(dx) = (cos^(2) (a+y))/(sin a ) , cosa ne +-1

If y=(x^x) then (dy)/(dx) is

If y = Ae^(6x) +Be^(-x) prove that (d^(2)y)/(dx^(2)) - 5 (dy)/(dx) - 6y = 0

(a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2