Home
Class 11
MATHS
If x=acos^3theta,y=bsin^3theta, f i n d ...

If `x=acos^3theta,y=bsin^3theta, f i n d (d^3y)/(dx^3)` at `theta=0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = a cos^(3)(Theta), y = a sin^(3)(Theta) find (d^(2)y)/(dx^(2)) .

Find (dy)/(dx) if x=3 cos theta- 2cos^(3)theta,y=3 sin theta -2sin^(3) theta.

If x=asec^(3)theta " and " y=atan^(3)theta " find " (dy)/(dx) " at " theta=pi/3 .

If x = a sin^(3)(Theta) y=a cos^(3)(Theta) find dy/dx .

If x = aCos^3 θ and y= aSin^3 θ then dy/dx=

The tangent at any point on the curve x=acos^3theta,y=asin^3theta meets the axes in Pa n dQ . Prove that the locus of the midpoint of P Q is a circle.

Show that the equation of the normal to the curve x=a cos ^(3) theta, y=a sin ^(3) theta at 'theta ' is x cos theta -y sin theta =a cos 2 theta .

Find the slope of the normal to the curve x=a cos^(3) theta,y=a sin^(3) theta at theta=(pi)/(4) .