Home
Class 11
MATHS
If n >2, then prove that C1(a-1)-C2xx(a-...

If `n >2,` then prove that `C_1(a-1)-C_2xx(a-2)++(-1)^(n-1)C_n(a-n)=a ,w h e r eC_r=^n C_rdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that C_0-2^2C_1+3^2C_2-4^2C_3+...+(-1)^n(n+1)^2xxC_n=0w h e r eC_r=^n C_r .

Find the sum 1xx2xxC_1+2xx3C_2+ +n(n+1)C_n ,w h e r eC_r=^n C_rdot

Find the sum 1C_0+2C_1+3C_2++(n+1)C_n ,w h e r eC_r=^n C_rdot

Prove that ""^(n)C_r + ""^(n)C_(r-1) = ""^(n+1)C_r

Prove that sum_(r=1)^k(-3)^(r-1)^(3n)C_(2r-1)=0,w h e r ek=3n//2 and n is an even integer.

.^((n-1)C_(r) + ^((n-1)) C_((r-1)) is

Prove that "^n C_r+^(n-1)C_r+...+^r C_r=^(n+1)C_(r+1) .

Prove that (r+1)^n C_r-r^n C_r+(r-1)^n C_2-^n C_3++(-1)^r^n C_r = (-1)^r^(n-2)C_rdot

If C_(r) = .^(n)C_(r) then prove that (C_(0) + C_(1)) (C_(1) + C_(2)) "….." (C_(n-1) + C_(n)) = (C_(1)C_(2)"…."C_(n-1)C_(n))(n+1)^(n)//n!

Prove that sum_(r=0)^(2n)r(.^(2n)C_r)^2=n^(4n)C_(2n) .