Home
Class 11
MATHS
If f(x)=x^4tan(x^3)-x1n(1+x^2), then the...

If `f(x)=x^4tan(x^3)-x1n(1+x^2),` then the value of `(d^4(f(x)))/(dx^4)` at `x=0` is 0 (b) 6 (c) 12 (d) 24

Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of f(x)=x/(1+4x+x^2) is -1/4 (b) -1/3 (c) -1/6 (d) 1/6

L e tf(x)=x^3-(3x^2)/2+x+1/4 Then the value of (int_(1/4)^(3/4)f(f(x))dx)^(-1) is____

L e tf(x)=x^3=(3x^2)/2+x+1/4 Then the value of (int_(1/4)^(3/4)f(f(x))dx)^(-1) os____

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

"If "f(x)=(x-1)^(4)(x-2)^(3)(x-3)^(2)(x-4), then the value of f'''(1)+f''(2)+f'(3)+f'(4) equals

If (d)/(dx)f(x)=4x^(3)-(3)/(x^(4)) , then f(x) is

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in Rdot If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to (a)6 (b) 0 (c) 3f(3) (d) 2f(0)

The value of int_0^1e^(x^2-x)dx is (a) 1 (c) > e^(-1/4) (d) none of these

If f(x) =(e^x)/(1+e^x), I_1=int(f(-a))^(f(a)) xg(x(1-x)dx, and I_2=int_(f(-a))^(f(a)) g(x(1-x))dx, then the value of (I_2)/(I_1) is (a) -1 (b) -2 (c) 2 (d) 1

If f(x) is differentiable and strictly increasing function, then the value of ("lim")_(xvec0)(f(x^2)-f(x))/(f(x)-f(0)) is 1 (b) 0 (c) -1 (d) 2