Home
Class 11
MATHS
Find (dy)/(dx) for the function: y=sin^(...

Find `(dy)/(dx)` for the function: `y=sin^(-1)sqrt((1-x))+cos^(-1)sqrt(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) for the function: y=sqrt(sinsqrt(x))

Find (dy)/(dx) for the function: y=a^((sin^(-1)x))^2

y = sin^(-1)(x/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2))

Find (dy)/(dx) in the following : y= sin^(-1) (2x sqrt(1-x^(2))), (1)/(sqrt(2)) lt x lt (1)/(sqrt(2)) .

Find (dy)/(dx) of the functions. x^(y)+y^(x)=1 .

Integrate the functions (sin^(-1)x)/(sqrt(1-x^(2)))

Find (dy)/(dx) for y=tan^(-1)sqrt((a-x)/(a+x)),-a lt x lt a

Find (dy)/(dx) if y=sec^(-1)((sqrt(x)+1)/(sqrt(x)-1))+sin^(-1)((sqrt(x)-1)/(sqrt(x)+1))

Integrate the functions (sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x)),x in[0,1]

int(2sin^(-1)x)/(sqrt(1-x^(2)))dx